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Abstract

An iterative method is developed for the solution of Poisson’s problem on an infinite domain in the presence of interior
boundaries held at fixed potential, in three dimensions. The method combines pre-existing fast multigrid-based Poisson
solvers for data represented on Cartesian grids with the fast multipole method. Interior boundaries are represented with
the embedded boundary formalism. The implementation is in parallel and uses adaptive mesh refinement. Examples are
presented for a smooth interior boundary for which an analytical result is known, and for an irregular interior boundary
problem. Second-order accuracy in L1 with respect to the grid resolution is demonstrated for both problems.
Published by Elsevier Inc.
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1. Introduction

The Poisson problem is central to a wide variety of applications in computational physics, from electrostat-
ics to projection methods for incompressible flow. For gridded data, or grid-mediated point data (e.g., the par-
ticle-in-cell method) the easily implemented boundary conditions are Dirichlet, Neumann, or periodic.
However, for many problems the most appropriate choice, on physical grounds, is the infinite domain condi-
tion. Solutions to the infinite domain problem have been estimated using the easily implemented boundary
conditions in conjunction with very large computational domains, or with stretched grids, employed to remove
the boundary from the region of interest. Of course such approaches are only approximate, and can be very
demanding of resources especially in 3D. More rigorous boundary potential methods have been developed
that determine the inhomogeneous Dirichlet conditions on a finite domain that are consistent with the desired
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infinite domain properties [22,14,12,23,1,16]. These methods exploit the free space Green’s function to con-
struct a boundary potential from a set of screening charges.

This work is concerned with an extension of boundary potential methods to infinite domain Poisson prob-
lems that contain also surfaces with fixed potential. One possible solution to this combined problem is the
superposition of the solution of an external Dirichlet Laplace problem (e.g., [19]) with the solution to an infi-
nite domain Poisson problem constructed without interior boundaries. Such external Dirichlet Laplace prob-
lems involve quadrature of a codimension 1 Fredholm equation with singular kernel, integrated over the
interior boundary. This results in a dense matrix equation for the charge density on the interior surface
[15,19], and is similar to the 2D capacitance matrix method of Hockney and Eastwood [7]. Instead of pursuing
such non-iterative approach, an iterative method based on existing fast solvers is developed.

Consider a three dimensional rectangular domain Xdom which contains space charges prescribed through
the charge density q, and one or more closed regions Xint with prescribed surface potentials /int. The objective
is the solution U to the Poisson problem
DU ¼ q ð1aÞ
U ¼ /int on oXint ð1bÞ

UðxÞ � � Q
4pjxj as x!1; ð1cÞ
where Q is the sum of all charges in Xdom, consisting of space charges q, and also surface charges on oXint.
After [22,14,12] we decompose U as sum of two fields, U ¼ /þW, where / is given by
D/ ¼ q ð2aÞ
/ ¼ /int on oXint ð2bÞ
/ ¼ 0 on oXdom; ð2cÞ
and / ¼ 0 everywhere outside Xdom. It is possible to express / as a free space Green’s function convolution
over the space charge density q and surface charges densities .:
/ðxÞ ¼ Xdom
dV 0Gðxjx0Þqðx0Þ þ

Z Z
oXint

dS0Gðxjx0Þ.intðx0Þ þ
Z Z

oXdom

dS0Gðxjx0Þ.domðx0Þ: ð3Þ
Here the surface charge densities .int and .dom are implicit functions given by (3) with the boundary con-
ditions (2b) and (2c). Alternatively, Green’s second theorem may be written
/ðxÞ ¼ Xdom
dV 0Gðxjx0ÞD0/ðx0Þ �

Z Z
oXint

dS0 � r0/ðx0ÞGðxjx0Þ þ
Z Z

oX int

dS0 � r0Gðxjx0Þ/ðx0Þ

�
Z Z

oXdom

dS0 � r0/ðx0ÞGðxjx0Þ þ
Z Z

oXdom

dS0 � r0Gðxjx0Þ/ðx0Þ ð4Þ
from which, using (2c) and comparing with (3), one may deduce
.domðxÞ ¼ �n � r/x on oXdom: ð5Þ

The correction field W must solve
DW ¼ �
Z Z

oXdom

dS0dðx� x0Þ.domðx0Þ ð6aÞ

W ¼ 0 on oXint ð6bÞ

W � � Q0

4pjxj as x!1; ð6cÞ
where Q0 is the sum of boundary charges on oXint and oXdom. The right hand side of (6a) is �.dom expressed as
a space charge density, required by the condition that U ¼ /þW have no charge density on the artificial
boundary oX dom. As a convolution over the free space Green’s function, W may be written
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WðxÞ ¼
Z Z

oXint

dS0Gðxjx0Þ~.intðx0Þ �
Z Z

oXdom

dS0Gðxjx0Þ.domðx0Þ; ð7Þ
where ~.int is an implicit function determined by (7) with the boundary condition (6b). Comparing this result
with Green’s second theorem one determines
~.int ¼ �n � rWx on oXint: ð8Þ

Combining (5), (7), and (8) yields the integral equationZ Z Z Z
WðxÞ ¼ �
oXint

dS0 � rWðx0ÞGðxjx0Þ þ
oXdom

dS0 � r/ðx0ÞGðxjx0Þ: ð9Þ
Our approach will be to solve (2a) by finite volume methods, and to solve (9) through simple iteration,
namely Z Z Z Z
Wðkþ1ÞðxÞ ¼ �
oXint

dS0 � rWðkÞðx0ÞGðxjx0Þ þ
oX dom

dS0 � r/ðx0ÞGðxjx0Þ ð10Þ
subject to the condition WðkÞ ¼ 0 on oX int. The algorithm is stated below in Section 2, and demonstrated
through an analytical example in Section 3. In Section 4 the established numerical methods used to implement
the algorithm are described briefly. Second-order accuracy in L1 for C1 and C0 interior boundaries is demon-
strated in Section 5, and the convergence properties of the algorithm are discussed.

2. Algorithm

The iterative algorithm proceeds as follows:

I. First, solve the homogeneous Dirichlet domain boundary problem
D/ ¼ q ð11aÞ
/ ¼ /int on oXint ð11bÞ
/ ¼ 0 on oXdom: ð11cÞ
II. Second, compute the charge density on the domain boundary and compute an estimated boundary poten-
tial using the free space Green’s function. The superscript in parenthesis will denote an iteration index.
.dom ¼ �n � r/ on oXdom: ð12aÞ

/ð0ÞdomðxÞ ¼ �
Z Z

oXdom

dS0Gðxjx0Þ.domðx0Þ: ð12bÞ

Now proceed with iteration index k ¼ 1.
III. Compute the induced charge on the interior boundary. This begins by solving the Laplace problem

DWðkÞ ¼ 0 ð13aÞ
WðkÞ ¼ 0 on oXint ð13bÞ
WðkÞ ¼ /ðk�1Þ

dom on oXdom; ð13cÞ
where WðkÞ is taken to be zero everywhere within X int. The induced surface charges are then

~.ðkÞint ¼ �n � rWðkÞon oXint: ð14Þ

IV. These induced surface charges modify the boundary potential,
/ðkÞdomðxÞ ¼ /ð0ÞdomðxÞ þ
Z Z

oXint

dS0Gðxjx0Þ~.ðkÞint ðx0Þ: ð15Þ
V. If the boundary potential has converged, the iteration ceases and U ¼ /þWðkÞ. Convergence is assessed
by measuring the L2 norm of j/ðkÞdom � /ðk�1Þ

dom j. Otherwise, k :¼ k þ 1 and recompute the induced charge
(Step III).
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The behavior and convergence properties of the algorithm can be shown with a small analytical example. In
Section 3 it will be shown that the algorithm outlined above will fail to converge when the interior boundary
and domain boundary are close (in a sense that will be made clear). One remedy for this convergence problem
is to replace (15) with
/ðkÞdomðxÞ ¼ x/ð0ÞdomðxÞ þ x
Z Z

oXint

dS0Gðxjx0Þ~.ðkÞintðx0Þ þ ð1� xÞ/ðk�1Þ
dom ðxÞ ð16Þ
for 0 < x < 1. (16) has the same stationary point as (15) and enables convergence for essentially any well-re-
solved geometry where Xint is contained within Xdom.

3. Analytical example

For an analytical exposition in 3D it is convenient to use spherical geometry. Let Xdom be a sphere of radius
a > 1, and let Xint be a concentric sphere of radius 1, and omit space charges q. The potential can at all times
be expanded in spherical harmonics. With three simple observations, the analytical example is easily carried
out: (i) the spherical harmonic modes are fully decoupled from one another; (ii) the ‘m spherical harmonic
component of the potential varies with r like arl þ br�ð‘þ1Þ; and (iii) if the ‘m component of charge density
on a spherical shell of radius r1 is .m

‘ , then the potential due to this charge density has amplitude
/m
‘ ¼ �

r‘þ2
1

r‘þ1
2

.m
‘

2‘þ1
evaluated on a spherical shell with radius r2 P r1.

Let /int have amplitude f m
‘ in harmonic mode ‘m. The solution to algorithm step I is
/m
‘ ¼ f m

‘

r
a

� �‘ � a
r

� �‘þ1

s 1
a

� �‘ � a
1

� �‘þ1
: ð17Þ
Associated with this solution is the domain surface charge density .dom and associated domain surface com-
pensating potential, step II:
.m
dom‘
¼ � f m

‘

a
ð2‘þ 1Þ

1
a

� �‘ � a
1

� �‘þ1
ð18aÞ

/ð0Þdom‘

m
¼ �f m

‘

1
1
a

� �‘ � a
1

� �‘þ1
: ð18bÞ
The general solution to the Laplace problem of step III is
WðkÞm‘ ¼ /ðk�1Þm
dom‘

r
1

� �‘ � 1
r

� �‘þ1

a
1

� �‘ � 1
a

� �‘þ1
; ð19aÞ
and the corresponding induced surface charge on the interior boundary is
~.ðkÞmint‘ ¼ /ðk�1Þm
dom‘

ð2‘þ 1Þ
a
1

� �‘ � 1
a

� �‘þ1
ð19bÞ
giving a new boundary potential, step IV:
/ðkÞdom‘

m
¼ /ð0Þdom‘

m
� /ðk�1Þm

dom‘

1

a2‘þ1 � 1
: ð20Þ
writing k‘ ¼ 1=ð1� a2‘þ1Þ we have
/ðkÞdom‘

m
¼ /ð0Þdom‘

m 1� kkþ1
‘

1� k‘
; ð21Þ
which converges to
/�dom‘
m ¼ /ð0Þdom‘

m a2‘þ1 � 1

a2‘þ1
¼ f m

‘

a‘

a2‘þ1 � 1
ð22Þ
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provided jk‘j < 1 or a2‘þ1 > 2 for all ‘. The 00 mode is the slowest to converge, requiring a > 2. The same con-
clusion regarding the 00 mode may be drawn through analysis of [11, problem 1.6]. The converged correction
field Wm

‘ (19a), added to the initial calculation /m
‘ (17), gives the exact analytic result Um

‘ for the model
problem:
Um
‘ ¼ f m

‘ r�ð‘þ1Þ: ð23Þ

With the relaxed convergence scheme of (16), algorithm step IV would give
/ðkÞdom‘

m
¼ x/ð0Þdom‘

m
� x/ðk�1Þm

dom‘

1

a2‘þ1 � 1
þ ð1� xÞ/ðk�1Þm

dom‘ ð24Þ
in place of (20). Writing k0‘ ¼ 1þ xðk‘ � 1Þ we have
/ðkÞm‘ ¼ /ð0Þm‘ x
1� k0

kþ1

1� k0
þ k0

kþ1

" #
: ð25Þ
Convergence requires jk0‘j < 1 for all ‘. This condition implies
0 < x < 2ð1� a�1Þ; ð26Þ

and the converged result is again given by (22). Note that a viable solution to (26) is possible for any a > 1,
whereas a > 2 was required in the absence of relaxation.

If a space charge density were included in this example, the potential fields / and U would differ from the
formulae given above by addition of the convolution G � q, where the particular Green’s function used here
maintains zero potential on the interior sphere. A particularly efficient solution is given by the method of
images [11, Section 2.4].

4. Implementation

The numerical method uses a Cartesian grid finite volume approach with cell-centered data. Complex inte-
rior geometries are represented by overlaying the interior domain on the Cartesian grid. Cut cells are charac-
terized by volume fraction, cell surface area fractions, and an interface normal vector. The implementation is
built using the Chombo library of block-structured data management and operation tools. The treatment of
complex geometry is based on ideas in [13], and has been developed for hyperbolic, parabolic, and elliptic
problems in [4,17,20].

4.1. Poisson solvers

Algorithm steps I and III solve Dirichlet boundary condition Poisson problems using the second-order
accurate approach of [20]. The approach uses a divergence form of the Laplace operator, with cell-edge fluxes
at irregular domains being computed through specialized high-order stencils. Geometric multigrid is
employed, with graph-based coarsening operators making possible coarse-grid relaxation at resolutions below
which the interior geometry may be resolved. Additional detail on the stencil operations may be found in [18].

4.2. Boundary charge calculation

Domain boundary charges (algorithm Step II) are estimated using a one-sided finite difference approxima-
tion to n � r/. When adaptive mesh refinement is used estimates of surface charge may be available at several
grid resolutions. In that case the values computed at the highest resolution are used, and underlying coarse cell
approximations are discarded.

Charges computed on the interior boundary (algorithm Step III) are estimated in each cell containing an
interface. The derivative n � r/ is obtained by solving a least squares problem for the first derivatives, second
derivatives, and the second-order cross derivative terms of /. The centering point of the Taylor series is the
centroid of the intersection of the interior boundary with the computational cell. This least squares problem
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uses data from all ‘‘regular” cells (cells that do not contain an interface and are not contained inside the inte-
rior boundary), and that are in a line of sight with the cell in which the gradient is desired. This last condition
eliminates from the least squares fit those data that are ‘‘close”, but which may be separated from the centering
point by thin boundary walls. The least squares problem is solved by Householder QR reduction, and the
result is stored as a stencil – a set of pairs of weights and cell coordinates. The relatively expensive stencil con-
struction occurs once in the method, and each iterative evaluation of algorithm Step III involves a computa-
tionally inexpensive evaluation of the stencil. The interior boundary surface charge in a cell is proportional to
the product of the derivative n � r/ with the area of the interior boundary. As with domain boundaries, with
adaptive mesh refinement the charge may be computed at multiple resolutions. The values used are obtained at
the finest available level of resolution.

4.3. Free space Green’s functions

Algorithm steps II and IV involve computing domain boundary potentials from surface charge densities.
The free space Green’s function convolution is solved using an implementation of the fast multipole method
(FMM) [6,5,3], which follows closely the non-adaptive scheme presented in [5].1 The rotation of multipole and
local expansions make use of rotation matrices constructed by the very efficient recursive method of Ivanic and
Ruedenberg [9,10].2

The FMM calculates local expansions which represent the potential in a neighborhood from charges well-
separated from that neighborhood. Charges that are not well-separated are evaluated by direct calculation,
�1=4pjrj. When calculating the domain boundary potential due to domain boundary charges, it is necessary
to account for the case where the charge and potential are co-located. This is accomplished using an integral
formulation for the potential at a point due to a uniform charge density over a 2D square source (e.g., [8, Eqs.
(4)–(6)]. All domain potentials computed directly from domain charges make use of this strategy. If ever an
interior boundary charge need to be transferred directly to an domain boundary potential, a point-to-point
�1=4pjrj calculation is used, the points being respective centroids.

The FMM uses a hierarchy of Cartesian data layouts on a cubic domain. The finest level of FMM refine-
ment corresponds with a coarsened version of the Poisson domain, suitably extended to be cubic and have
length be a power of 2. The coarsening is not essential, but improves performance by balancing the cost of
multipole ? local operations against the number of direct �1=4pjrj operations required.

When adaptive mesh refinement is used, the boundary potential is calculated on all available levels of
refinement that abut oXdom.

5. Results and conclusions

The first example verifies the method by comparing calculations against analytical solutions. The interior
boundary is a sphere of radius 0.1, centered in a cubic domain of length 1, resembling the cartoon of Fig. 1. A
collection of 200 point charges surround the sphere. Their coordinates are chosen randomly to lie inside the
torus with major radius 0.2 and minor radius 0.05, bisected by the horizontal midplane of the sphere. The
sphere has fixed potential with 00 and 22 spherical harmonic modes (using the real part with Greengard’s
choice of normalization), with magnitude 1 and 10, respectively. The spherical coordinates are rotated relative
to the cube in order to break the symmetry of the problem, via Rzð45�Þ � Ryð15�Þ � Rzð30�Þ. The analytic ref-
erence solution for the potential due to the sphere is treated in a straightforward manner. The Cartesian grid
representation of the analytic contribution of the point charges is more delicate. In each computational cell, an
analytical volume average of the �1=4pjrj potential is calculated for the given charges and for the image
charges used to respect the interior boundary condition. For the numerical solution, the point charges are dis-
tributed on the grid using a cloud-in-cell distribution [2]. Second-order convergence in L1 is found (Table 1). In
1 The imaginary exponent in [5, Eq. (7.17)] and [3, Eq. (49)] should be negative. [6, Eq. (3.60)] is correctly rewritten as [5, Eq. (5.6)] and
[3, Eq. (17)].

2 Table 2 is correct in [9] not [10].



Fig. 1. Schematic view of proposed problem. The rectangular computational domain ðXdomÞ contains an interior object ðXintÞ whose
surface potential /int is fixed. The volume Xdom n Xint may also contain a distribution of space charges q. Arrows signify boundary normal
vectors n.

Table 1
Convergence study for sphere with 200 point charges

1=h L1 Rate L1 Rate L2 Rate

16 0:151� 102 0:175� 101 0:209� 101

32 0:341� 101 2.14 0:145� 100 3.60 0:158� 100 3.73
64 0:171� 101 1.00 0:337� 10�1 2.10 0:381� 10�1 2.05
128 0:829� 100 1.04 0:734� 10�2 2.20 0:100� 10�1 1.93

Errors relative to analytical solution.
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L1 the convergence is Oðh1Þ: an inherent problem of particle-in-cell type methods. With the point charges
omitted, the corresponding Laplace problem is second-order accurate in all norms (Table 2).

The sphere-box problem has also been solved with adaptive mesh refinement, again omitting space charges.
The sphere is offset relative to the center of the domain box (Fig. 2) to demonstrate that the method accom-
modates data with multiple resolutions on the domain boundary. In these computations the hierarchy of
nested domains was held fixed. The grid spacing changes by a factor of two across levels. Approximately sec-
ond-order convergence is again observed, Table 3.

The second example demonstrates the robustness of the method by showing second-order convergence for a
case where the interior boundaries are not smooth. The interior surface is C0 on a set of codimension 2, and
C1 elsewhere. In some cells containing these C0 regions a sufficiently large stencil of points is not always avail-
Table 2
Convergence study for sphere without point charges

1=h L1 Rate L1 Rate L2 Rate

16 0:129� 102 0:113� 100 0:189� 100

32 0:335� 101 1.95 0:132� 10�1 3.10 0:438� 10�1 2.11
64 0:126� 101 1.41 0:389� 10�2 1.76 0:123� 10�1 1.83
128 0:237� 100 2.41 0:799� 10�3 2.29 0:248� 10�2 2.31

Errors relative to analytical solution.



Fig. 2. AMR grid layout.

Table 3
Convergence for three-level adaptive mesh refinement, without point charges

1=h L1 Rate L1 Rate L2 Rate

16/32/64 0:235� 101 0:281� 10�2 0:109� 10�1

32/64/128 0:169� 101 0.47 0:667� 10�3 2.08 0:224� 10�2 2.29

Errors relative to analytical solution.
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able for a second-order computation of the interior boundary charge. However, since the set of such points is
only codimension 2, the overall solution displays second-order convergence in L1. The interior boundaries are
held at fixed potential /int ¼ 0, and a C0 distribution of space charges q is prescribed (Figs. 3 and 4). Because
of the proximity of the interior boundaries to the domain boundary, relaxation is used with x ¼ 0:7. The con-
Fig. 3. Geometry of second test: Franklin’s experiment with a bolt of charge.



Fig. 4. Contours of U corresponding to geometry of figure 3.

Table 4
Convergence study for C0 geometry

1=h L1 Rate L1 Rate L2 Rate

16 vs. 32 0:231� 10�1 0:273� 10�3 0:365� 10�3

32 vs. 64 0:745� 10�3 1.63 0:394� 10�4 2.78 0:407� 10�4 3.17
64 vs. 128 0:292� 10�3 1.35 0:171� 10�4 1.22 0:174� 10�4 1.22
128 vs. 256 0:289� 10�3 0.015 0:335� 10�5 2.36 0:342� 10�5 2.35

Errors estimated by Richardson extrapolation.
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vergence results (Table 4) are second-order in L1 and L2. A rate of order h0 is found for L1: this is the expected
result for C0 boundaries in L1 for Poisson’s problem with the embedded boundary formalism [20, Section 2.2].

Fig. 5 displays the convergence properties for a sequence of test problems consisting of a sphere of diameter
D centered in a cubic domain of length L, and h ¼ L=64. Space charges are omitted. The sphere has the same
Dirichlet boundary conditions as the first example problem, and x ¼ 1 for all calculations. From the nested
sphere analytical example we expect convergence for D=L < 1

2
(approximately), and this expectation is borne

out.
Fig. 6 examines the effect of varying x when D=L ¼ 0:8 – a problem that diverges with x ¼ 1. Again,

h ¼ L=64. Qualitatively, relaxation values x < 0:6 have the effect of stabilizing the method, and an optimum
relaxation parameter in the neighborhood of 0.4 is shown to exist.

An estimate of the optimal relaxation parameter for the general case may be deduced from a numerical
measurement of the possibly divergent behavior when x ¼ 1. We note first that the overall iterative scheme
is characterized by a linear operator A, and the convergence properties of the method depend on the eigen-
value spectrum of this operator. Let L denote the inverse operator of (13a), i.e., WðkÞ ¼ L/ðk�1Þ

dom. Then A is
given schematically as
A ¼ �GðxdXdom
jxdXint

Þ � o

on

����
oXint

L; ð27Þ
and
eðkÞ ¼ Aeðk�1Þ ð28aÞ
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with
eðkÞ � /ðkÞdom � /�dom ð28bÞ

the boundary potential error at iteration k when /�dom is the converged result.

In consideration of the parity of operators L and G, operator A will have negative eigenvalues k, and con-
vergence will be governed by supðjkjÞ. The proposed relaxation scheme is governed by an operator Ax,
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Ax ¼ ð1� xÞI þ xA ð29Þ

with eigenvalues kx ¼ 1þ xðk� 1Þ.

Let A denote the smallest eigenvalue of A, and B denote its largest eigenvalue. An approximation to the
optimal relaxation parameter x can be had by seeking a mapping ðA;BÞ7!ðAx;BxÞ, with Ax ¼ �Bx character-
izing the optimal choice. That is,
x ¼ 2

2� A� B
: ð30Þ
Owing to the distinct linearity observed in Fig. 5, an estimate of A can be had by observing the convergence
behavior of the method using x ¼ 1 and a small number of iterations. With D=L ¼ 0:8 the slope of the curve
gives A 	 �2:37. The same slope is observed for the L2 solution error, and we assume here that the solution
error is proportional to the boundary potential error. There is no direct measure of B, but an upper bound of 0
can be inferred by analogy to the nested sphere example. Using this estimate one obtains x 	 0:42 as an
approximation to the optimal relaxation parameter. The observed optimum ( Fig. 7) is approximately
0.435, and is consistent with B having been overestimated (the optimum x 	 0:435 implies B 	 �0:23).

Although the spatial extent of the FMM grid hierarchy (Section 4.3) may be larger than the Poisson
domain, / and W are not computed on the extended domain. In this sense the present method is very compact.
In contrast, the methods of [12] and [16] solve fast (FFT-based) Poisson problems on extended domains as
part of their boundary potential calculation. Note that the method presented here, applied to a problem with
no interior domain, solves the same problem as [12,16], non-iteratively ðU ¼ /þWð0ÞÞ, on a compact domain.

The method presented here may be adapted to solve the infinite domain Poisson problem with Neumann
boundary conditions on the interior domain. Three changes are required: (i) / of step I would have an inho-
mogeneous Neumann condition on the interior surface; (ii) WðkÞ of step III would have a homogeneous Neu-
mann condition on the interior boundary; and (iii) the induced charge distribution on the interior boundary
would be a double layer. Across a double layer the jump in oW=on is zero, thus the potential inside the interior
domain is constant. By application of the divergence theorem, with there being no charges in Xint, it follows
that the constant must be zero. Finally, the jump in potential across a double layer gives r [21, L.15 Section 2].
With the interior value of W being zero,
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Fig. 7. Convergence behavior in the neighborhood of the predicted optimum x ¼ 0:42.
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rðx0Þ ¼ lim
x!x0

�WðxÞ
4p

; x0 on dXint; ð31Þ
where the limit is approached from the outside the interior domain. The Green’s function used to compute the
change in boundary potential /ðkÞdom due to the double layer is the negative of the normal derivative of the free
space Green’s function. The FMM method is easily adapted to this case [6].
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